Linear and Quadratic Functions

A linear function f of one variable is a function where the output is determined by a linear expression. Using function notation, a linear function \boldsymbol{f} of one variable can be written as $f(x)=m x+b$ where m and b are real numbers.

Graph the function $f(x)=\frac{2(x-1)+12}{5}$

Definition:

A quadratic function is any function that can be written in the form $f(x)=a x^{2}+b x+c$ where a, b, c are real numbers and $a \neq 0$.

What does the graph of a quadratic function look like?

When graphing a quadratic by hand there are 4 things I want you to determine algebraically and clearly label on the graph:

1. What are the exact coordinates of the vertex.
2. Where are the x-intercepts.
3. Where is the y-intercept.
4. Two other non-intercept points on the graph.

Graph the function $h(x)=-2 x^{2}-x+6$

Graph the function $g(x)=x^{2}+3 x+3$

Standard form of a quadratic function:

The quadratic function $f(x)=a(x-h)^{2}+k$
has a graph which is a parabola with a vertex at the point (h, k) and opens up if $a>0$ and opens down if $a<0$.

Graph the function $f(x)=-(x-5)^{2}-4$

Find the equations of the parabolas that are shown below:

Max and Min Problems:

The height of a ball (in meters) that is tossed up into the air from a starting height of 1.8 meters with an initial velocity of 24.5 meters per second is given by the function $s(t)=1.8+24.5 t-4.9 t^{2}$.

What is the maximum height that is obtained by the ball?

