Linear and Quadratic Functions

A linear function f of one variable is a function where the output is determined by a linear expression. Using function notation, a linear function f of one variable can be written as f(x) = mx + b where m and b are real numbers.

Graph the function $f(x) = \frac{2(x-1)+12}{5}$

Definition:

A quadratic function is any function that can be written in the form $f(x) = ax^2 + bx + c$ where a, b, c are real numbers and $a \neq 0$.

What does the graph of a quadratic function look like?

When graphing a quadratic by hand there are 4 things I want you to determine algebraically and clearly label on the graph:

1. What are the exact coordinates of the vertex.

2. Where are the x-intercepts.

- 3. Where is the *y*-intercept.
- 4. Two other non-intercept points on the graph.

Graph the function $h(x) = -2x^2 - x + 6$

Graph the function $g(x) = x^2 + 3x + 3$

Standard form of a quadratic function:

The quadratic function $f(x) = a(x - h)^2 + k$ has a graph which is a parabola with a vertex at the point (h, k)and opens up if a > 0 and opens down if a < 0.

Graph the function $f(x) = -(x-5)^2 - 4$

Find the equations of the parabolas that are shown below:

Max and Min Problems:

The height of a ball (in meters) that is tossed up into the air from a starting height of 1.8 meters with an initial velocity of 24.5 meters per second is given by the function $s(t) = 1.8 + 24.5 t - 4.9 t^2$.

What is the maximum height that is obtained by the ball?